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In recent works, the author has shown the utility of new, semiempirical kinetic model equations for treating
dispersive chemical processes ranging from slow (minute/hour time scale) solid-state phase transformations
to ultrafast (femtosecond) reactions in the gas phase. These two fundamental models (one for homogeneous/
deceleratory sigmoidal conversion kinetics and the other for heterogeneous/acceleratory sigmoidal kinetics;
isothermal conditions), based on the assumption of a “Maxwell-Boltzmann-like” distribution of molecular
activation energies, provide a novel,quantum-basedinterpretation of the kinetics. As an extension to previous
work, it is shown here that the derivation of these dispersive kinetic equations is supported by classical collision
theory (i.e., for gas-phase applications). Furthermore, the successful application of the approach to the kinetic
modeling of the solid-state decomposition of a binary system, CO2‚C2H2, is demonstrated. Finally, the models
derived appear to explain some of the (solid-state) kinetic data collected using isoconversional techniques
such as those often reported in the thermal analysis literature.

Introduction

The author has recently published two novel,semiempirical
kinetic equations for modeling dispersive kinetics which are
based on the assumption of a distribution of activation energies.1

They have shown great promise in terms of their widespread
applicability.1-4 The equations developed are able to fit and
explain even the most challenging asymmetric, isothermal
conversion-time (x - t) sigmoids, using only two “fit param-
eters”, both of which have units in the time domain. In this
work, the application of these equations to the solid-state
decomposition of the binary system, CO2‚C2H2 (as studied by
Gough5), is presented. Additionally, for the first time, an
alternate derivation of these equations is provided, starting from
assumptions based in collision theory. This derivation is intended
to help validate the models, as will be discussed later. The author
believes that the approach developed here for modeling disper-
sive reaction kinetics, based on “quantizing the activation energy
barrier”, represents a significant advance in the modeling of
chemical kinetics.

Background: Kinetic Models for Solid-State Conversions.
In the late 1930s/early 1940s, workers such as Johnson and
Mehl,6 Avrami,7-9 and Erofe’ev10 discussed crystal physics
approaches for modeling solid-state kinetics. The result, the so-
called “Avrami equation”, which is widely used even to this
day for treating nucleation-and-growth-type mechanisms, may
be written in differential form as:

wherex is the mole fraction of “reagent solids” remaining in
the system at timet, andk andp are empirical fit parameters (k
is referred to as the rate constant andp is the growth

dimensionality). It has been shown that eq 1 may be recast in
the following form:11

which contains the empirical parametersm and n. In sharp
contrast to the original derivation, these parameters generally
take noninteger values, as opposed to certain ordered integer
pairs (e.g., ref 5). The Avrami equation describes the accelerated
growth or “branching” of randomly distributed product nuclei,
followed by a statistical slowing down of the reaction due to
product surface impingement. Written as shown in eq 2, it has
a similar form to the basic autocatalytic rate equation, i.e., the
Prout-Tompkins (P-T) equation:2,12-15

which generally fits symmetricalx - t sigmoids. The Avrami
equation was further generalized with the advent of the Sestak-
Berggren (S-B) and extended Prout-Tompkins (EPT) equa-
tions.16,17 The S-B and EPT equations, respectively, can be
written as:

where the empirical fit parameter,q, which is often close to
unity, allows the conversion to start (because dx/dt ) 0 when
x ) 0, the start time of the reaction is inherently undefined; as
a result, the “induction period” has historically been a poorly
explained feature of sigmoidalx - t curves (e.g., ref 15), until
recently.1,2). To this day, the Avrami, S-B, and EPT equations
continue to be widely used in applications ranging from slurry

* Corresponding author. E-mail: skrdla@earthlink.net. Telephone:
908-232-0572.

- dx
dt

) kp(1 - x)[ln(1 - x)]1-(1/p) (1)

- dx
dt

) kxn(1 - x)m (2)

- dx
dt

) kx(1 - x) (3)

- dx
dt

) kxn(1 - qx)m[-ln(1 - x)]p (4)

- dx
dt

) kxn(1 - qx)m (5)

11494 J. Phys. Chem. A2006,110,11494-11500

10.1021/jp063534g CCC: $33.50 © 2006 American Chemical Society
Published on Web 09/16/2006



polymorphic transformations of pharmaceutical compounds to
solid-state decompositions. Unfortunately, these equations, like
other popular solid-state kinetic models (e.g., refs 18-21), are
not without shortcomings.1

The EPT and S-B models contain the most empirical fit
parameters (and in the author’s experience, these allow the
equations to fit some asymmetricx - t sigmoids): there are
four of these in the EPT equation and five in the S-B equation.
Taking the EPT equation as an example, one can foresee that
small, noninteger differences inm and n (as may often be
observed in real experimental data) may make intersystem
comparisons of kinetic trends difficult. For example, to directly
compare the rate constants,k, or activation energies,Ea, obtained
for two different systems, the values ofm and n for the two
systems being compared should match (within experimental
error) to ensure consistency between the conversion mecha-
nisms. Of course, the physical meaning of various numerical
combinations ofm andn may not be entirely clear with respect
to how they relate to particular mechanisms or how they may
relate changes in those mechanisms in the first place.

Dispersive Kinetics.Dispersion in the activation energy of
a process is often caused by molecular dynamics effects; e.g.,
molecules in a given ensemble can react at different times simply
due to the fact that they have different speeds, path lengths
between collisions, collision geometries, etc. This idea represents
a fundamental assumption in the area of dispersive kinetics.
Dispersion in the activation energy barrier, in turn, creates a
distribution of molecular reactivities (i.e., rate constants) that
helps to define the kinetics of the conversion taking place on a
macroscopic (measurable) scale. Although an activation energy
barrier is typically defined on a potential energy surface, the
dispersion can be considered to be kinetic in origin as, for ex-
ample, it may be caused by differences in the molecular speeds
of otherwise identical reagent molecules in a given ensemble.

Dispersive kinetics can be observed in all phases of matter
provided that the phenomena causing the dispersion occurs on
a time scale that is similar to, or slower than, the overall (i.e.,
macroscopic) conversion rate. Because of the wide range of
chemical processes that may potentially fall in this category,
the study of dispersive kinetics is of great importance. For this
reason, a cursory overview of traditional dispersive kinetic
approaches is provided below before the author’s own, unique
interpretation of these systems (which can be considered to be
based on a combination of quantum mechanics and dispersive
kinetic theory) is presented. As support for the development of
a new approach for modeling solid-state kinetics, the author
cites the recent publications by Galwey, who has criticized
traditional approaches for treating and explaining thermal kinetic
data and has called for reform in this area (e.g., ref 22).

As mentioned earlier, dispersive kinetics are observed when
a chemical conversion occurs on a time scale that is com-
parable to, or shorter than, that of the internal rearrangements
(mixing) continuously occurring inside the reacting system.23

Classical examples of dispersive kinetics are found in the
electron transfer in viscous solvents, the reactions of large
biomolecules, reactions in glasses, and femtosecond events in
fluid media.24 In these cases, the Arrhenius assumption of a
single activation energy fails. Instead, introducing the concept
of fractal time(which allows for the mathematical treatment of
individual molecules in a system reacting on different time
scales, e.g., see the Kohlrausch-Williams-Watts (KWW)
equation discussed below) to account for molecular dynamic
effects (i.e., relaxation23), assuming the continuous time random
walk (CTRW) model of Montroll and Weiss25 for the molecular

motion, one finds that the rate constant for the chemical
conversion is time-dependent (as is the activation energy) and,
ultimately, that this time-dependent rate constant may be derived
mathematically by starting with a distribution of activation
energies for a given dispersive conversion. These are concepts
that are common to the various stochastic models of kinetics
occurring in “renewing environments”, a field which was
recently reviewed by Plonka.23,24

Fundamentally, the Kohlrausch-Williams-Watts (KWW)
relaxation or “stretched exponential” function,φKWW, serves as
a starting point for many treatments of dispersive processes.
As pointed out by Plonka, while the KWW stretched exponential
and Curie-von Schweidler (CvS) power law have been used
essentially universally to characterize the relaxation of thousands
of systems to date, these remainphenomenological(i.e., empiri-
cal) formulas.24 The KWW function has the following form:

wheret is the time,τ is the effective relaxation time, andR is
the dispersion parameter for relaxation. For first-order dispersive
kinetics, one may write:26

wherek is the (time-dependent) rate constant for the conversion
and the integration limits are 0 and∞ for each of the above
equations. The functionsg(k) and f(τ) represent probability
density functions for the rate constants and relaxation times,
respectively, in a superposition of monoexponential decays (i.e.,
for the individual molecules in the ensemble reacting on various
time scales) that isapproximatedby the KWW function.27

Taking the inverse Laplace transform ofφKWW yieldsg(k) (or,
alternatively,f(τ)). If g(k) is obtainable, one may also determine
g(εa), the corresponding probability density function for the
activation energy of the process, using the relation:28

(where kB is the Boltzmann constant andh is the Planck
constant) which is obtainable directly from the Eyring definition
of the rate constant:

and the relation:

Unfortunately, inverse Laplace transforms are known exactly
only for R values of 1/3, 1/2, and 2/3. For other cases, the
mathematics may be nontrivial and/or the results may be difficult
to interpret (e.g., ref 24). Additionally, the inverse Laplace
transform becomes an ill-conditioned problem in the presence
of noisy data.29 We highlight here the fact that the Avrami
equation, discussed earlier, is a simple result of this “traditional”
dispersive kinetic approach, which is obtainable by starting with
the KWW function and assuming first-order kinetics.23,24,26,30

However, the limitations of the Avrami equation are evident
from numerous works, including that of Gough,5 which we will
examine later in this paper. As an aside, the nucleation-and-
growth theory of Yu31 has demonstrated much greater generality;
the Avrami equation is a result of this theory that is obtained
by considering the simplest, homogeneous systems.

φKWW ) exp[-(t/τ)R]; 0 < R e 1 (6)

φKWW ) ∫ g(k) exp(-kt) dk ) ∫ f(τ) exp(-t/τ) dτ;

for f(τ) ) g(1/τ)/τ2 (7)

g(k) ) [-h exp(εa/kBT)][g(εa)] (8)

k ) (kBT/h) exp(-εa/kBT) (9)

g(k) dk ) g(εa) dεa (10)
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A New Direction in the Modeling of Dispersive Reaction
Kinetics. While the assumption of a distribution of activation
energies has been applied to such diverse areas of study as ion
channels (e.g., ref 28) and combustion reactions (e.g., refs 11,
32), the approach is not prevalent in the solid-state kinetics
literature. Instead, much of the literature dealing with solid-
state phase transformations and decomposition reactions has
focused on either “model-free” isoconversional methods (e.g.,
refs 33-36) or the use of a standard set of kinetic models (e.g.,
18-21), or both (e.g., 37), with either isothermal or noniso-
thermal approaches (e.g., 38). Isoconversional methods have
provided the thermal analysis community with a view into the
complexity of many solid-state processes, but these approaches
unfortunately do not provide much mechanistic insight into the
conversions. Interestingly, however, for some elementary phase
transformations (e.g. 18, 39), it appears that the activation
energy,Ea, obtained as a function of the extent of conversion,
x (or 1 - x), may be adequately described by a single
distribution. It is in these cases where the author has recently
focused his attention.

Since 2005, the author has attempted to derive new kinetic
models that exhibit the following characteristics: mathematical
simplicity, ease of use, high-quality fits to experimental data,
and physical relevance of the fit parameters (note: it is believed
that the latter may be achieved by avoiding the use of
phenomenological equations, where possible). The approach
taken requires that amolecular actiVation energy distribution
be defined a priori with respect to the derivation of the kinetic
model(s), which is opposite to the majority of the approaches
in the dispersive kinetics literature. As mentioned earlier, this
activation energy distribution,D(εa), is the result of “system
renewal”1 occurring continuously during the course of the
conversion. The Maxwell-Boltzmann (M-B) distribution is
selected to defineD(εa), regardless of the fact that it is typically
used to describe the molecular speed/kinetic energy distribution
of an ideal gas, as a first approximation. This distribution was
chosen because the partition function for molecular motion in
an ideal gas has an analytical solution and thus the M-B
distribution has an algebraically manageable form. Additionally,
the M-B distribution has a desired asymmetric shape (note that
many isothermal, solid-state conversions exhibit asymmetric,
sigmoidal shapes1), unlike a Gaussian distribution that is based
on random walk, Brownian motion. The author believes that
D(εa) is ultimately a convolution of a kinetic energy distribution
(which results from molecular dynamics, hence the use of the
M-B kinetic energy distribution) and a potential energy (which
relates to the classical Arrhenius definition of the activation
energy). To summarize, the approach to dispersive kinetics that
is described in this work is a simple, statistical mechanical one
(perhaps more easily envisioned for gas-phase applications),
which does not attempt to rigorously describe various modes
of molecular motion occurring in different phases. Note that,
while the M-B distribution has previously been dismissed as
being inapplicable to solid-state kinetics, based on the fact that
solids contain immobilized constituents, Arrhenius kinetics are
supported by both Fermi-Dirac (for electrons) and Bose-
Einstein (for photons) distributions, which have similar func-
tional forms to the M-B distribution.40

Results and Discussion

Semiempirical, “Statistical Kinetic” Model Equations: A
Novel Treatment for Dispersive Kinetics.In Eyring’s transi-
tion-state theory (TST), reagent molecules collide, in a bimo-
lecular reaction, to form a high-energy “activated complex (AC)”

species that defines the activation energy barrier (relative to the
zero-point energy). This complex exists in the vicinity of the
transition state (TS) on a potential energy surface (PES) in a
“pseudo-equilibrium” with both the reagents and products. The
decomposition of the AC occurs on the time scale of a low-
energy bond vibration, either yielding products or regenerating
the reagents.41 Unfortunately, the direct application of this theory
to different reaction mechanisms and to conversions in con-
densed phases raises key fundamental questions. For example,
what is the nature of the AC when one does not have a
homogeneous, bimolecular reaction (i.e., for a solid-state phase
transformation)? Because the “quantization of the activation
energy barrier” in the Eyring case uses relatively high-energy
quanta (i.e., bond vibrations), the result is inherently a single
activation energy, which, for a given conversion, correlates to
a unique (i.e., time-independent) value of the rate constant.

In sharp contrast to the work of Eyring, the author has selected
to use, as a first approximation, the quantization of a much lower
energy (dynamic) property of molecules (translational motion)
as a basis for quantizing the activation energy barrier (it is noted
here that, for polyatomic molecules, the total kinetic energy
contains translational, vibrational, and rotational components,
but the latter two typically represent significantly higher energy
modes than translational motion). Translational motion is of
sufficiently low energy to allow the quantization of typical
activation energies (ca. 30-300 kJ/mol) into small, discrete units
which, when summed over the population of a reasonably large
molecular ensemble, yields a mathematically smooth distribution
of states (this is important for mathematical integration, as was
discussed previously1). However, because the potential energy
barrier to conversion can be considered to be unique to each
process, in dispersive kinetics, one obtains an activation energy
distribution that takes theshapeof the kinetic energy distribu-
tion. In other words, the quantization of the activation energy
occurs in the kinetic energy component.

Figure 1 shows a schematic energy diagram outlining what
the author believes to be the key differences between the
traditional Arrhenius-Eyring definition of the activation energy,
εa (whereεa ) εAS - εg) and his definition ofD(εa), for both
acceleratory and deceleratory dispersive processes (note: the
energy levels in this schematic pertain to species that define
the rate-determining step, rds, of the process, which is assumed

Figure 1. Schematic representation (not drawn to scale) of energy
levels that impact the kinetic descriptions of systems with (A) Arrhen-
ius-Eyring kinetics, i.e., a single activation energy, (B) homogeneous
(deceleratory) dispersive kinetics, and (C) heterogeneous (acceleratory)
dispersive kinetics; see text for details. Energy (both potential and
kinetic) increases along the vertical axis. The narrowly spaced energy
levels are akin to translational quanta, which are assumed to be popu-
lated in accordance with the functional form of the M-B distribution
(depicted by the graphic embedded within these energy levels).
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to be unchanged over the duration of the conversion). Note that
the kinetic energy distributions in Figure 1 would normally be
shown inverted if the vertical axis was labeled “potential
energy”, instead of simply “energy”, to reflect the idea that
potential energies and kinetic energies are inversely related, as
in the classical mechanics sense. For nondispersive processes,
the entire reagent population reacts with a single activation
energy, as shown in “A” in the figure.

In homogeneous dispersive processes (e.g., solid-state thermal
decompositions (e.g., refs 18, 47)), the dispersion in the
activation energy originates from kinetic energy differences that
are attributable to thereagent population. This effect produces
deceleratory, sigmoidalx - t profiles, in which the reagent
molecules with the highest kinetic energies react before the
lower kinetic energy molecules (as one may expect). In sharp
contrast, for heterogeneous dispersive processes (e.g., crystal-
lizations and solvent-mediated polymorphic transformations
(e.g., refs 1, 19)), the dispersion is predominantly attributable
to the “actiVated state(AS)” (note: the author’s definition of
the AS is more generally defined than the AC in TST in that
the AS can generally be any species that is higher in potential
energy than the starting material). For example, in a crystal-
lization governed by a nucleation-and-growth mechanism,
acceleratory x- t profiles are often observed experimentally.
In such cases, molecules with the lowest kinetic energies react
before those with higher kinetic energies. This makes sense in
light of the fact that many crystallizations initiate on cold
surfaces or with the introduction of seed crystals; these surfaces
are believed to “slow the motion of the colliding reagent
molecules” so that they can be incorporated into the developing
lattice (thus, the crystal lattice represents the higher energy state,
i.e., the AS). As the conversion proceeds, more reagent
molecules are consumed. The conversion occurs coincidentally
with a decrease in the activation energy (i.e., with increasing
time), which produces the acceleration in the sigmoidalx - t
transient. In general,D(εa) ) εAS + D(εKE) for a deceleratory
process (labeled “B” in Figure 1), whileD(εa) ) -D(εKE) - εg

for an acceleratory process (labeled “C” in Figure 1), where
D(εa) is the activation energy distribution, as defined earlier,
D(εKE) is the energy distribution of the species responsible for
the dispersion, andεg refers to the zero-point energy level of
the reagent species for the acceleratory case. Note that, in the
case of a deceleratory conversion,εg is a distribution and thus
it is defined simply asD(εKE) in the figure.

Previously, the author assumed an activation energy distribu-
tion having the functional form of the M-B distribution or
“inverted M-B distribution”, depending on whether the solid-
state kinetics were heterogeneous (acceleratory) or homogeneous
(deceleratory), respectively, in nature1. From Figure 1, the origin
of the “∪”- and “∩”-shapedD(εa) is readily apparent. It is
emphasized here that the author hypothesizes that: (1) both
molecular-level kinetic energies (e.g., from collision theory) and
a potential energy barrier (as per the classical Arrhenius
equation, denoted as “εa°” later in the paper) are essential in
the treatment of dispersive reaction kinetics using the approach
discussed in this work, and (2) the “M-B-like” kinetic energy
distributions assumed in this treatment can be mapped onto a
PES for a given reaction using an inverse relationship between
the kinetic and potential energies, much like a ball rolling down
a hill under the force of gravity converts potential energy into
kinetic energy.

First-Order Statistical Kinetic Models for Dispersive
Kinetics: Comparison of the Original Derivation to a
Collision Theory-Based Derivation.It was previously shown1

that one can convert the traditional M-B speed distribution42

to a corresponding kinetic energy distribution and then use the
latter distribution, together with the Eyring equation (eq 9), to
define the functional form of the corresponding distribution of
rate constants. This distribution of rate constants relates a system
rate constant,k(t), which has a quadratic dependence on time:

whereR andâ are constants (under isothermal conditions). This
expression fork(t) can be inserted into the following equation:

that describes the kinetics of a process using an integrated first-
order equation in which the rate constant is time-dependent11

and then integrated. The result is asemiempiricalmodel equation
for treating theacceleratory/ heterogeneousdispersive kinetics
under isothermal conditions:

The derivation of eq 13 was presented in detail elsewhere1. Note
that the derivation of this equation neglects an explicit descrip-
tion of the potential energy contribution to the activation energy
barrier because this energy is a constant and thus it does not
affect theshapeof D(εa). Similarly, for deceleratory/homoge-
neousprocesses, the time-dependent rate constant for the overall
conversion can be defined as1:

By using eq 14 in eq 15 (which assumes a dimensionality of
two for the process, hence thet2 term, which supports the idea
of 2-D nucleation/denucleation occurring on predominantly flat
crystal faces (e.g., ref 43); in contrast, the dimensionality) 0
for heterogeneous conversions in which the activated state is
defined by dissolved molecules, as per eq 12), below,

and integrating fromt ) 0 to t ) t, one obtains the following
(isothermal) dispersive kinetic model:

which has a similar form to eq 13. (Note: even though an
approximation is used during the integration that ultimately
yields both eqs 13 and 16,4 it has been shown that these
equations remain valid in the modeling of data down to low
integer values oft, the units of which can be arbitrarily selected,
to begin with.) The fit parameters,R andâ, have units of (time)
or (time)-1 and (time)-2, for the deceleratory and acceleratory
model equations, respectively; these constants may be referred
to as “global rate parameters”.

The Arrhenius equation is generally considered to provide a
“coarser representation” of the Eyring equation. It can be shown
that the Eyring equation yields the same expression as that which
can be obtained from collision theory (CT), for a bimolecular
reaction of ideal gases.41 This observation lends a level of “self-
consistency” to these fundamental kinetic theories, meaning that,
at a very high level, they can essentially be considered identical
(i.e., mathematically, in considering the model equations). The
derivation that follows attempts to demonstrate a similar “self-
consistency” for the semiempirical, dispersive model equations

k(t) ) (2Râ) exp(ât2) (11)

x ) exp[-∫ k(t) dt];

integration limits fromt ) 0 to t ) t (12)

x ) exp{[-R/t][exp(ât2) - 1]} (13)

k(t) ) (2Râ) exp(-ât2) (14)

x ) exp[-t2 ∫ k(t) dt] (15)

x ) exp{[Rt][exp(-ât2) - 1]} (16)
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(i.e., eqs 13 and 16) by starting with the CT-based assumption
of a molecular speed term in the preexponential factor of the
rate constant expression and not explicitly assuming a molecular
distribution of activation energies as per the previous derivation1.
Some of the key outcomes of the earlier derivation are utilized,
together with the basic assumptions of CT, to verify that: (1)
the “distribution of activation energies” observed experimentally
for dispersive processes is kinetic in origin and (2) potential
and kinetic energies may be combined, as shown schematically
in Figure 1, to treat the kinetics of dispersive processes. In doing
so, the goal is to provide the reader with a different perspective
of the molecular-level basis for the author’s “quantizing of the
activation energy barrier” in dispersive kinetics.

CT is based on the assumption that the rate constant for a
given conversion is proportional to the product of three terms:
a steric term, an encounter rate, and a minimum energy require-
ment (i.e., the “exponential term”).41 Thus, a general expression
for the molecular rate constant,k, may be written as:

for a bimolecular reaction of ideal gases (whereP* is the steric
factor,σ is the collision cross-section,µ is the reduced mass of
the colliding molecules, andεa, kB, andT are defined as before).
Neglecting the steric factor, the preexponential term relates the
product of the collision cross-section and the relative mean speed
of the reacting species. For this reason, one can consider using
eq 11 (assuming isothermal conditions) in the preexponential
term of eq 17 to describe a distribution of rate constants that
originates from the variations in molecular speeds. By doing
so, one obtains the equation:

whereΛ is a term that encompasses the pertinent (iosthermal)
constants of the CT rate expression. Note that, in eq 18,k is a
function of botht andT, in contrast to eq 17.

By rewriting eq 18, it is found that:

Returning to the schematic in Figure 1, it was observed that,
for a dispersive, heterogeneous/acceleratory conversion, the
activation energy distribution may be graphically represented
by: D(εa) ) -D(εKE) - εg. From eq 19, the corresponding
t-dependence of the activation energy,εa(t), is given by: εa(t)
) εa° - kBTât2, whereεa° is the time-independent potential
energy barrier to conversion. Conversely, for a homogeneous/
deceleratory conversion, it was found that, graphically,D(εa)
) εAS + D(εKE); from eq 19,εa(t) ) εa° + kBTât2 (note that in
this case, the net activation energy barrier clearly increases with
time, which causes a deceleration in the conversion rate,
characteristic of homogeneous conversions). From these results,
support is gained for the idea that the activation energy
distribution of dispersive processes has both kinetic energy and
potential energy components, which can be differentiated based
on the fact that the former is time-dependent while the latter is
not. Interestingly, the time-dependent activation energy equa-
tions derived here have a form that is not unlike that derived
by Plonka for a first-order dispersive reaction.23

By using eq 19 in eq 12 and integrating fromt ) 0 to t ) t
(with the aid of the mathematical simplification, as before4),
one obtainspreciselyeq 13, in whichâ is defined simply as a
constant as before, but:

Similarly, for the homogeneous/deceleratory case, one obtains
eq 16, but, in that case,R ) -Λ exp(-εa°/kBT)/2â. Thus, it is
demonstrated that one can use two “orthogonal” derivations to
obtain the same two semiempirical model equations. It is
highlighted here that eq 20 is an entirely new result, which
clearly shows that thepotential energy barrierto conversion is
time-independent and, as a result, it shows up as a component
of the R term (theΛ/2â portion of this term is an expected
result from the original derivation1) in both model equations,
eqs 13 and 16.

By using eq 20, it can also be shown why, in the author’s
earlier work1, it was possible to plot ln(Râ) vs 1/T for the
solvent-mediated polymorphic transformation of a pharmaceuti-
cal compound, i.e., in a “traditional Arrhenius plot”, to obtain
an estimate of the “global activation energy” from the slope of
the linear regression fit of the data. This is because:

and thus the slope of such a plot is given by “-Ea°/R” (where
R is the gas constant), as per the Arrhenius equation (the vertical
intercept of the line, ln(Λ*), is also consistent with the Arrhenius
equation, whereΛ* is typically called the “frequency factor”;
the “1/2” coefficient may arise from assuming a unimolecular
process, whereas Eyring reactions are inherently bimolecular).
From eq 21, one can see that the “global activation energy”,
Ea°, is actually the (molar) time-independent potential energy
barrier to the conversion. It is highlighted here that because
Ea° is simply a potential energy, yet the kinetic energy
contribution to the observed activation energy distribution is a
function of t (which is directly related tox, for a known
conversion mechanism, at constantT), it should be possible to
obtain bothEa° and â for a given conversion by performing
isothermal kinetic experiments at different temperatures. This
may be of interest since it was shown earlier that, together,Ea°
andâ define the “time-dependent activation energy”,Ea(t) (and,
thus, potentially also the “distribution of activation energies”
for the conversion; this idea will be pursued in future work), of
dispersive kinetic processes.

Treatment of CO2‚C2H2 f CO2 + C2H2 Conversion
Kinetics Using Semiempirical Dispersive Model Equations.
In previous works, it was shown that the kinetic approach
described here can be applied to a host of dispersive processes:
both heterogeneous and homogeneous (isothermal) solid-state
conversions,1 femtosecond reactions in the gas phase,4 and even
lifespan modeling in animals.3 As part of this work, an attempt
is made to demonstrate yet another application: the decomposi-
tion of the mixed-phasecryogenic crystals of CO2‚C2H2, as
studied by Gough et al.5 This system is unique even with respect
to the diverse array of applications previously studied, as it
involves a two-component reaction which is accompanied by a
phase change. While the reaction mechanism is clearly first-
order (from the chemical equation), one can see from inspection
of thex - t trends in Figure 2 that the kinetics are heterogeneous
(i.e., acceleratory) in nature, although the system is obviously
very different from the slurry polymorphic transformation to
which eq 13 was applied previously.1

Gough et al. found that the low-temperature solid-state
conversion, CO2‚C2H2 f CO2 + C2H2, is poorly described by
the Avrami equation. However, thex - t plot for this
conversion, which is reproduced in Figure 2, was able to be fit
through numerical solution, assuming a distribution of poly-
hedral volumes (interestingly, having the functional form “aV2

k ) P*σ(8kT/πµ)1/2 exp(-εa/kBT) (17)

k ) Λ exp(-εa/kBT) exp(ât2) (18)

k ) Λ exp[(-εa + kBTât2)/kBT] (19)

R ) Λ exp(-εa°/kBT)/2â (20)

ln(Râ) ) ln(Λ/2) - εa°/kBT ) ln(Λ*) - Ea°/RT (21)
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exp(-bV2)”, wherea andb are constants andV is the terminal
volume of the growing product crystal) and assuming unimpeded
growth in three dimensions until the point of complete con-
sumption of local reagent material. From Figure 2, one can see
that eq 13 fits the data quite well (R2 ) 0.996), supporting the
idea that the kinetics are heterogeneous/acceleratory. Conversely,
eq 16, for use in homogeneous/deceleratory systems, is unable
to fit the data with any degree of precision.

As an aside, it is interesting to point out that the “Gompertz
survival model” (GSM), often used in biological applications,
does an even better job of fitting the data in the figure (R2 )
0.999) than eq 13. As shown previously,3 the GSM equation
may be written in similar form to eq 13:

In fact, the GSM equation may be obtained directly by using
the following form of the time-dependent rate constant,k(t):

in the integrated form of a simple first-order rate expression
having multiple rate constants, i.e., eq 12. Essentially, the only
difference between the GSM equation and eq 13 is the order of
the time-dependence ofk(t) (note: the preexponential term, 2Râ,
provides a minor simplification to our final result, eq 13).

Conclusions

The intent of this account is to provide the reader with
additional insights into the origin of the author’s dispersive or
“statistical kinetic” semiempirical model equations. Figure 3
summarizes the key findings of this work in the form of a
schematic illustration. The author believes that the semiempirical
models presented here (eqs 13 and 16) may offer a more
physically meaningful approach for the treatment of solid-state
kinetic data compared to that of standard (i.e., nondispersive)
kinetic models. Some of the advantages of the dispersive kinetic

models, over existing kinetic models, may include the high
quality of the data fits, the ability to estimate or even define a
start time for the conversion, and the use of only two fit param-
eters, each with physical units. The author hopes that, with
broader use, these equations continue to demonstrate versatility
in a wide range of chemical applications, simultaneously helping
to reaffirm some of the assumptions made in the development
of these models.

Supporting Information Available: A discussion of the
empirical nature of traditional kinetic models and the semiem-
pirical basis of the author’s dispersive kinetic models is
presented. Additionally, a discussion of a “three-dimensional
Marcus theory” is presented to lend support to the idea of
molecular motion serving as the basis for the majority of
dispersive processes. This material is available free of charge
via the Internet at http://pubs.acs.org.
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